Vestibular Concerns Following Sport-Related Concussion

Tamara C. Valovich McLeod, PhD, ATC, FNATA
John P. Wood, D.O., Endowed Chair for Sports Medicine
Associate Professor, Athletic Training
A.T. Still University
tmcleod@atsu.edu

Outline

- 1. Vestibular system structure and function
- 2. Associated conditions
- 3. Dizziness, balance impairments, vestibular pathology, cranial nerve palsy
- 4. Physical examination of vestibular system
- 5. Treatment and rehabilitation concerns

Peripheral Sensory Apparatus

- Bony Labyrinth
 - o Semi-circular canals
 - o Cochlea
 - o Vestibule
- Membranous labyrinth
 - Membranous portion of SCC
 - Otolith ogans
 - Utricle
 - Saccule

Vestibular Function

- Detection of angular and linear acceleration
- Relation of head with respect to gravity
- Functional outcomes
 - Oculomotor: gaze stabilization
 - Vestiulospinal: contribution to postural control

Vestibular Reflexes

- Vestibulo-ocular reflex (VOR)
 - o Generates eye movements that enable clear vision when the head is moving
- Vestibulocollic reflex (VCR)
 - o Acts on neck musculature to stabilize the head
- Vestibulospinal reflex (VSR)
 - o Generates compensatory body movements to maintain head and postural stability (i.e. prevent falls)

Why Be Concerned With Vestibular Function?

- Dizziness
- Balance Impairments
 - Sensory disorganization
- Vestibular Pathology
- Cranial nerves
 - Vestibulocochlear

Dizziness and Balance Impairments

- May affect up to 20-50% of mild-modertate TBI patients (Zollman, 2011)
- Second most commonly reported symptom in 61-72% of athletes (Guskiewicz, 2000, 2001; Lovell, 2006)

- One of the five most common complaints that distinguish post-concussive patients from healthy controls (Chamelin, 2004)
- Predictor of protracted recovery (Lau, 2009)

Head Trauma Induced Dizziness

Dizziness

- Nonspecific term that can refer to
 - Presyncopal lightheadedness
 - o Vertigo
 - Sense of imbalance
 - Mutisensory dizziness
- Broad categories
 - o Vestibular
 - o Non-vestibular

Dizziness Classification

- Vestibular
 - o Ischemia
 - o Hemorrhage
 - o Direct trauma
 - o Benign positional vertigo (BPV)
 - o Labyrinthine concussion
 - Decreased processing speed
 - o Migraine headache
 - o Concomitant injuries to visual or musculoskeletal system can affect vestibular output
- Non-vestibular
 - Positional orthostasis
 - C-spine injury
 - o Medications (anithypertensives, anticonvulsants)
 - Hyponatremia
 - Vestibular epilepsy

Pathophysiology of Dizziness and Balance Disorders

- Complex system
- Multiple sensory inputs
- Visual, vestibular, somatosensory
- Injury to any component can result in dizziness and imbalance
- Head injury that does not result in TBI may result in dizziness

Clinical Presentation: Dizziness and Balance Impairments

- Lightheadedness
- Spinning or rotating sensation
- Balance problems

Examination: Dizziness and Balance Impairments

- Objective measures
 - Dynamic Gait Index
 - Measures of gait velocity
 - o Dix-Halpike Test (BPPV)
 - o Balance assessment
- Self-report measures

- o Dizziness Handicap Inventory
- Vertigo Handicap Questionnaire
- o Vertigo Symptom Scale

Vestibular Pathology

- 30-65% of TBI patients will present with some variety of vestibular pathology (Herdman, 2007)
- TBI confounds vestibular pathology
- Assess and treat patients differently from those with only peripheral vestibular deficits
- Mechanism of injury
- Incidence of other neurologic deficits and persistent symptoms complicate recovery

Labyrinthine Concussion

- Inner ear concussion
 - Most common vestibular sequela of TBI
- Symptoms
 - High frequency sensorineural hearing loss
 - o BPPN/V
 - Postural imbalances
 - o Gait ataxia

BPPV

- Results from intense acceleration of the utriclular otolithic membrane which results in displacement of otoconia to the posterior SCC
- Displaced otoconia may result in displacement of the cupula in response to gravity in specific positions.
- BPPV produces a transient positional nystagmus
- Transient vertigo

Clinical Presentation: Vestibular Pathology

- Dizziness
- Vertigo
- Nausea
- Disequilibrium
- Visual disturbances

Examination: Vestibular Pathology

- Dix-Hallpike Test
- Observation of visual tracking
 - o Nystagmus
 - o Saccades
 - Pursuits
- Dynamic Gait Index
- Clinical Test of Sensory Interaction on Balance

Cranial Nerve Palsy: Etiology

- Accleration-Decleration
- Shearing
- Skull fracture
- Intracranial hemorrhage
- Vascular occlusion

Cranial Nerve Palsy

- Most frequently injured
 - o CN I: Olfactory
 - o CN VII: Facial
- CN VIII: Vestibulocochlear
 - Less commonly injured
 - o CN II: Optic
- CN III: Oculomotor
 - Rarely injured
 - o CN V: Trigeminal

Assessing Vestibular Function

- Diagnostic
 - Semicircular canals
 - Caloric irrigation
 - Rotary chair
 - Vestibular autorotation test (VAT)
 - Otoliths
 - Vestibular evoked myogenic potential testing (VEMP)
 - Off vertical axis rotation
 - Subjective visual vertical
- Clinical Tests
 - Interview / patient history
 - Oculomotor screening
 - SCC and otoliths
 - Functional tests
 - Gaze stability
 - Balance

Oculomotor Screening

- Smooth pursuit and ocular ROM
- Saccades
- VOR suppression
- Gaze stability
- Eye alignment

Smooth Pursuits

- Follow finger or object in an H or X pattern
- Eye movement should be smooth with no corrective saccades

Saccades

- Look at nose then finger to left, back to nose, finger to right
- Repeat looking up and down
- Movement should be smooth
- No over/undershoot or corrective saccades

VOR Suppression

- Testing that the visual system can override the VOR
- Have patient look at your nose while you move their head
- Should be no movement of eyes off fixation on your nose

Gaze Stability

- Focus on stationary object while moving head side to side or up and down
 - o Vertical/Horizontal: any observable nystagmus, dizziness, blurriness, slowed movements
 - Convergence

o Near point <6-8cm

Eye Alignment and Symmetry

- Ask patient to look at target 6-8 feet away
- Observe eye alignment
- Should be symmetrical at center
- Left-right
- Up-down

Clinical Tests of SCC Function

- Head thrust or head impulse test
- Head shake
- Dynamic visual acuity (DVA)

Head Impulse Test

- Assessing VOR
- Patient looks at your nose
- Gentle, rapid passive movement of head left and right
- Done by a trained individual
- Positive if corrective saccade is noted

Head Shake Test

- Similar to Head Thrust
- Vision blocked (goggles or eyes closed)
- Patient actively helps rotate head 20 times each side
- Open eyes wide
- Look for presence of nystagmus
- Positive if more than 2 beats

Dynamic Visual Acuity

- Read print moving to smaller lines until patient misses 3/5
- Line above = acuity
- Passively move head left-right 15 degrees to each side
- Difference in the 2 scores is the DVA score
- Positive test is 2 ore more lines

King-Devick Test

- Evaluates visual tracking and saccadic eye movements
- Initially used for reading and dyslexia
- Sideline post-concussion showed significant worsening from BL: 46.9 vs. 37.0 s, P = 0.009 (Galetta, 2011)

Clinical Tests of Otolith Function

- Subjective Visual Vertical
- Balance

Subjective Visual Vertical

- Bucket test
- Level/goniometer attached to bucket
- Vertical line inside
- Patient's goal is to get the line to vertical
- Examiner slowly moves bucket

• Patient indicates when to stop

Balance Assessment

- Heel to opposite knee
- Finger to nose
- Romberg test
- Computerized posturography (SOT, CTSIB)
- Clinical balance tests (BESS, SEBT)
- Functional balance tests (TUG, Gait)

Sensory Systems

Multisensory Integration

- <u>Process</u> inputs from the periphery as the environment changes
- Weight inputs based upon relevance (Sensory Reweighting)
- Select appropriate sensory input based upon
- Availability
- Accuracy

Isolation of Sensory Input

- Clinical Test of Sensory Interaction for Balance (CTSIB)
- Sensory Organization Test (SOT)

Somatosensory Ratio

Condition 2 / Condition 1

Does sway increase when visual cues are removed?

Low score = poor use of somatosensory references

Vestibular Ratio

Condition 5 / Condition 1

Does sway increase when visual cues are removed and somatosensory cues are inaccurate?

Low score = poor use of vestibular cues

Visual Ratio

Condition 4 / Condition 1

Does sway increase when somatosensory cues are inaccurate?

Low score = poor use of visual references

NeuroComTM

- Sensory Organization Test
- Motor Control Test
 - o Ability of motor system to recover following a perturbation
- Adaptation Test
 - Ability to minimize sway when exposed to irregularities and unexpected changes in support surface properties.

Biodex Play It Safe

M-CTSIB

VSR Sport

- Stability Evaluation Test
- Validated against BESS
- 6 BESS stances done on a portable force plate

• Collects sway path and COG displacement

Balance Error Scoring System

Functional Assessment Balance

- Functional reach test (Katz-Laurer, 2008, 2009)
 - Excellent within session reliability in children with TBI
 - o Decreased FRT in children with TBI
- Timed Up and Go (Katz-Laurer, 2008, 2009)
 - o Good reliability in children with mTBI
 - o Slower TUG, smaller step length, increased step time, increased gait variability with mTBI
- Gait analysis (Katz-Laurer, 2009; Parker, 2007, 2008)
 - o Increased variability in step time and length, decreased gait speed in mTBI

Special Concerns with Balance Assessment

- Age (Cumberworth, 2007; Forssberg, 1982; Shumway Cook, 1995)
 - o Visual and vestibular functions mature through age 16, somatosensory develops earlier
- Fatigue (Wilkins, 2004; Susco, 2004; Fox, 2008)
 - o Decreased postural stability after exertion
 - o Increase in BESS errors, recovers in 13-20 min
- Learning effects (Valovich, 2003; Valovich McLeod, 2004)
 - Lower BESS scores by 3rd administration

Treatment and Rehabilitation

- Vestibular suppressants (short term basis)
 - o Anticholinergics
 - Antihistamines
 - o Benzodiazapines
- Balance Rehabilitation Therapy (BRT)
 - Vestibular rehabilitation

Vestibular Rehabilitation Specialists

- Vision impairments
- Headache
- Dizziness
- Sensory organization impairments

Indications for Vestibular Therapy

- Atypical Recovery
 - o Not back to baseline on balance assessment by 10 days post-concussion
 - o Impaired dynamic visual acuity tests
 - Dizziness
 - Motion provoked dizziness
 - o Nausea
 - o Blurred vision with head movement
 - Motion sensitivity

Indications for Vestibular Rehabilitation

- Symptoms
 - o Vertigo (especially when lying in bed)
 - O Dizziness/ imbalance (no improvement over one week or is persistent beyond two weeks)
- Balance impairments

- Strong Romberg (after one week)
- \circ BESS (if greater than baseline after one week or > 10 errors per set, > 30 total after one week)
- Positive Dix Hallpike +/- improvement or resolution with Epley maneuver
- Patients generally like the active nature of participating in their recovery

Rehabilitation Strategies

- Adaptation
 - o Ability of the vestibular system to make long-term changes in the neuronal response to input
- Substitution
 - Using other strategies to replace lost function
- Habituation
 - o Reduction in symptoms produced through repeated exposure to the movement

X1 Exercises

- Stationary target
- Subject moves head
- Horizontal and vertical
- Maintains visual fixation on target
- Target should remain clear (focused) while head is moving

X1 Errors

- Not keeping the eyes on the target
 - o Instead glancing from side to side
- Making the head movement too large
 - o Patient is looking out of the corner of the eyes
- Not moving the head in a consistent in this movement
 - o Not staying horizontal

Horizontal Eye Head Exercises

Remembered Target Exercise

- Patient fixates on a small target
- Closes eyes, pretending to look at that target
- Patient makes a horizontal head movement, trying to remember where the target is
- Opens eyes to check whether or not they are still looking at the target
- Aims to foster central pre-programming of eye movements

X2 Exercises

- Target and the head move in opposite directions
- Patient focuses on target

X2 Errors

- Similar to X1 errors
- Confusion when trying to move head and target in opposite directions
- Results in VOR cancellation

Concussion Rehabilitation

- Dual task strategies
 - Combined postural control and cognitive tasks
 - o Retrain executive attentional networks
 - o Secondary cognitive activities improve postural control (Wulf, 2001; Huxhold, 2006; Resch, 2011)

- Alternative assessments of balance
 - Cleveland Clinic iPad app
 - o Built-in accelerometer and gyroscope
 - Allow the device to measure position and movement
- Virtual Reality
 - o Wearing head mount display does not impair BESS (Mihalik, 2008)
 - o Balance deficits induced by visual field motion up to 30 days post-injury (Slobounov, 2006)
 - Long-term residual visual-motor disintegration in athletes with normal neurocognitive scores (Slobounov, 2006)
- Head Shake SOT
 - o Measures impairments in patient's ability to use vestibular inputs while actively moving head
 - SOT condition 2 (eyes closed on a firm surface) and condition 5 (eyes closed on a sway-referenced support surface)
 - o Patient wears a head movement monitor
 - o Performs a continuous rhythmic head movement about a specified yaw, pitch, or roll axis

Take home points

- Evaluation of the vestibular system is a vital component of concussion assessment
- Dizziness and vertigo are key symptoms
- Oculomotor examination important
- Balance assessment
- Ability to isolate sensory systems a plus
- Vestibular rehabilitation should be considered with atypical recovery