

Incidence of Hand Injury in Sports

NFL Combine Review 1987-2000

– Ankle Sprain 29.1% of all injuries

- Next was wrist/hand injuries 17.7%

(Brophy et al., 2007)

High School Athletes

- Incidence of Dislocation Injuries from 2005-2009
 - most common Shoulder
 - Second most common Wrist/Hand

(Kerr et al., 2011)

Anatomy Review

- Wrist Joints
 - Distal Radioulnar Joint
 - Radiocarpal Joint
 - Intercarpal joints/Midcarpal joints

Hand Bony Anatomy

- Hand
 - Carpometacarpal joints (CMC)
 - Metacarpophalangeal joints (MCP)
 - Interphalangeal joints (PIP, DIP)

Ligament Complexes

Wrist

Multiple volar, dorsal and collateral ligaments (too many to mention)

- TFCC

Triangular Fibrocartilage Complex
 Triangular shaped "disc" Ulnar wrist
 Like meniscus in knee- stability

TFCC

- Provides shock absorption
- Adds stability to the wrist

Forearm, Wrist, Hand

- Whole UE is Kinetic Chain
 - allows hand to be functional
 - Starts at thoracic spine
 - Involves scapulothoracic joint, shoulder, elbow and wrist/hand

Biomechanical Considerations-Kinetic Chain

 "Core strength" - Transverse Abdominus, Multifidus, Gluteals, Hip **External Rotators**

- Scapulothoracic Stability/Mobility
 - Rhomboids, Traps, Serratus Anterior - Thoracic spine/ribs

Common Wrist Injuries

- Fractures
- Ligament Sprains
- Tendonitis
- Nerve Injury
- Cartilage Injury

Wrist Fractures-Scaphoid

- Mechanism- fall on outstretched hand
- Symptoms
 - Swelling over snuffbox
 - Snuffbox tenderness
 - Limited ROM
 - Pain with axial compression of thumb towards radius

Scaphoid Fracture

- X-ray may be negative until 2-3 wks after injury
- MRI/Bone scan definitive diagnosis early
- When it doubt, Immobilize in thumb spica splint until confirmation

Treatment- Scaphoid Fx

- Stable Fracture
 - Immobilized in Scaphoid cast for up to 8weeks
- Unstable Fractures
- Percutaneous fixation
- ORIF
- Rehab starts sooner than cast only

Rehabilitation:

- Initial stage (0-3wks post cast)
 - ROM exercise
 - Pain and edema reduction
 - Wear thumb spica splint
- Stage 2 (3-5wks)
- Begin strengthening, splint
- Stage 3 (5-12+wks)
 - Continued strength, wean from splint
 - Work with MD on return to sport

Radius/Ulna Fractures

- Similar mechanism of Injury to Scaphoid Fractures
- Symptoms

 Deformity noted with injury
 Pain, swelling, loss of motion

Radius/Ulna Fractures

- Cast immobilization
- ORIF

Radius/Ulna Fracture

- · Rehabilitation after Casting - Stage 1 (wks 1-2)
 - ROM, edema reduction, tendon gliding
 - Stage 2 (wks 2-4) Continue ROM, add light strengthening
 - Stage 3(>4wks)

 - Gripping, lifting, gaining end ROMSports Specific training
- Special note- finger exercise can start IN cast

Tendon Gliding Exercise

- Functional motions of Hand/Digits
 - Edema management
 - ROM
 - Functional Grip improvement

Ligament Sprains

- Special Issues
 - Scapholunate Dissociation
 - After a "sprain" with falling on outstretched hand, continues to have pain and limited function
 - Feels clicking sensation in wrist
 - May be little or no swelling with these
 Scapholunate joint tender dorsally to palpation

Scapholunate Instability

- Diagnosis
 - Stress x-ray to measure gap between scaphoid and lunate
 - Watson Scaphoid Test
 - Sensitivity 69%, Specificity 66%
 - Stress x-ray is definitive here

Watson Scaphoid Test

- Pts arm in pronated position
- Grab wrist from radial side with thumb on scaphoid tubercle
- Move wrist from ulnar deviation and extension to radial deviation and flexion
- If present, will feel a "thunk" as the scaphoid moves back in place

Treatment

- Current review of Evidence-based Medicine recommends
 - Surgical fixation for active patients
 - No information regarding prolonged conservative care vs surgery in regards to arthritis, function (Kalaninov & Cohen, 2009)

DeQuervain' s Tenosynovitis

Synovial inflammation

– APL

- EPB
- At level of Radial Styloid
- Repetitive use injury
 - Racket Sports
 - Rowers, Canoeists
 - Bowlers

DeQuervain' s Diagnosis

- Palpation
- · Finkelstein's test
 - Sensitivity 81% (good to rule it out)
 - Specificity 50% (not so specific-other pathologies may be present with a positive test)

but it's all we've got, so use it!
 (Alexander et al, 2002)

DeQuervain's Treatment

- Splinting
 - Thumb Spica
 - May need custom splinting with a prominent Radial styloid, or with significant edema
- Local Modalities
 - Conflicting evidence on efficacy of physical modalities in the literature
- Manual therapy- friction massage

DeQuervain's Considerations

- Proximal stability/strength
 - Overuse of distal muscles for compensation
 - Look at periscapular muscles, rotator cuff
- Grip size vs grips with racket sports
- Eccentric strengthening

Carpal Tunnel Syndrome

- Median Nerve Compression in Carpal Tunnel
- Symptoms
 - Nocturnal burning, paresthesia
 - Pain may radiate to forearm, shoulder
 - Mm atrophy with prolonged compression

Diagnosis of Carpal Tunnel Syndrome

- History is Key- listen to the athlete
- NCV/EMG
- Physical Tests
 - Not great for specificity/sensitivitymixed reports in literature
 - Phalen's
 - Tinel's
- Best diagnosis based on symptoms

Treatment Carpal Tunnel Syndrome

- NSAIDS
- Splinting with wrist neutral

 Most over the counter splints at 20 degrees wrist extension, actually increase pressures in carpal tunnel
 - Custom neutral splint for night wear
- Nerve gliding exercises, local modalities

TFCC Injuries

- The Wrist Meniscus- ulnar side of wrist
- Can occur with
 - Sprains/strains
 - Fractures
 - Wrist instabilities
 - As a repetitive injury in compressive loading of the wrist

TFCC Symptoms

- Pain with Ulnar deviation and extension of the wrist
- Pain with compression and weight bearing activities
- Pain and clicking with loaded supination/pronation
- Reduced grip strength

TFCC Treatment

- NSAIDS
- Local modalities
- Wrist stabilization training
 Strengthening while avoiding
 symptoms
 - Wrist taping/splinting for activities
 - Wrist Widget

Common Hand Injuries

- Tendon Injuries
- Ligament /Pulley Injuries
- Fractures/Dislocations

Tendon Injuries

- Jersey Finger
- Mallet Finger
- Boxer's Knuckle
- Boutonniere Deformity

Jersey Finger

- Mechanism of injury

 Occurs when grabbing a jersey
 Profundus tendon ruptures
 - Ring finger affected 75% of time

Jersey Finger

- Symptoms
 - Cannot flex the DIP actively
 - Will present with swelling, pain
 - Swelling may camouflage the injury

Jersey Finger Diagnosis

- Clinical Exam
 - Unable to flex DIP
 - DIP with less resistance into passive extension (not always)
- Ultrasound evaluation
- MRI

Treatment of Jersey Finger

- Important to identify this within 7-10 days
- Surgical reconstruction of tendon
- If untreated, result in DIP instability which can lead to problems with PIP and further disability
- Grip strength following surgery approaches normal, expect 10-15 degree extension loss

ReturnTo Play

- Depends on Physician Protocol
- May return with splinting/casting earlier than expected
- Takes 8-10 weeks to rehabilitate post surgery
- Goals to restore normal DIP mechanics and strength

Mallet Finger

- Mechanism of Injury
 - Direct blow to the tip of the extended finger
 - Distal phalanx is forced into flexion
 - Disruption of the extensor mechanism over the dorsum of the DIP joint

Mallet Finger

- Symptoms
 - Swelling on dorsum of DIP
 - Inability to extend DIP

Diagnosis

- Based on clinical exam
- Bony Avulsions may be seen on Radiographs

Treatment of Mallet Finger

- Continuous Splinting of DIP in extension or slight hyperextension for 6 weeks (at least)
- Then additional night splinting for 2 to 4 more weeks
- Athlete can usually participate in their sport unless baseball pitcher or quarterback

Boxer's Knuckle

- Mechanism
 - Subluxation or dislocation of extensor tendons from direct blow
 - Mostly in middle finger

 Happens on Ulnar side more than radial

Sagittal Band Rupture allows extensor tendon to sublux

Boxer's Knuckle Treatment

- Conservative treatment
 - Splint MCP joint in extension for 4-6wks
- Surgery to repair sagittal band
 MCPs immobilized 3-4wks
 - Start active motion at MCP in dynamic extension splint next 2-3 wks
 - Discontinue splint at 6wks
 - Return to sport with full ROM/Strength

Boutonniere Deformity

- Mechanism
 - Occurs as a result of central slip injury
 - Head of proximal phalanx goes through the extensor mechanism
 - Occurs with Palmar dislocation of PIP joint
 - If left untreated, disabling deformity can result
 - Missed at times when dislocations are reduced on the field

Boutonniere Deformity

Diagnosis

- May present as a "jammed finger"
 A rupture of the central slip must be considered in these cases
- Study (Leddy & Coyle, 1989)
 - 16 athletes had "simple" PIP dislocations reduced on the field
 - 6 of these athletes had undetected central slip injuries (38%)

Treatment

- Recommend conservative treatment
 - Extension splinting at PIP joint as early as possible post injury
 - 5 weeks of continuous splinting with DIP free for motion
 - At 5 weeks, start AROM/PROM
 - 2 additional weeks of nighttime splinting
 - Chronic injuries require surgery

Ligament/Pulley Injuries

- Skier's Thumb
- Pulley Injuries

Skier's Thumb

- Mechanism
 - Forced abduction and hyperextension of the MP joint
 - Sprain of the UCL of the thumb

Skier's Thumb Treatment

- Grade I painful and stable
- Grade II- painful with some laxity, possible fracture
- Grade III- it's over, the ligament is gone, probable avulsion fracture

Skier's Thumb Treatment

- Grade I
 - Tape, Splint, ROM exercises, Ice, protect. Have some commercially available splints. (6wks)
- Grade II
 - Same as above, unless bony fracture involved (6-8wks)
- Grade III
 - Usually require surgical intervention then (6-8wks)

Pulley Injuries

- Rock Climbing mechanism
 - A2 pulley of ring finger most often
 - Happen with falls in the "crimp grip" position

Pulley Injuries

- Symptoms
 - Pain localized
 - Swelling
 - Difficulty moving finger, gripping
 - Unable to crimp grip

Pulley Injury Treatment

- Most Pulley Injuries
 Immobilize for 1wk
 - Start ROM exercises
 - Strengthening (isometric), avoid crimping for up to 6wks until painfree
- If do not respond to conservative treatment- Surgery

Fractures/Dislocations

- Symptoms
 - Traumatic, deformity usually noted, not always in the case of fracture
 - Pain
 - Swelling within the hour

Fractures/Dislocations

- Types
 - PIP joint (middle joint) most common
 - DIP joint
 - MCP joint- most severe, usually high impact

Many dislocations have associated fractures...How do you know?

Treatment

- Timeline is generally 4-6 weeks for bony healing
- Many of these can be immobilized, buddy taped and return to play per MD guidelines earlier

Treatment/Rehab

- Restore ROM
 - Timeline based on healing
 Fracture line into joint will be harder recovery
- Strengthening – Putty, clothes pins, etc.
- Return to play- buddy taping, splinting for protection

Ideas for Strengthening

- Putty resistance – Varying degrees of resistance
- Digiflex/grip strengthening devices
- Therabar
- Theraband
- Rice, beans, sand for resistance

In Review...

- The Hand is Complicated...but...
 - Same goals of return ROM, strength and function as in other joints of body
 - Smaller graded forces with manual therapy
 - Specific exercise protocols based on physician

Return to Play-Protect

- Tape
- Splinting
- Casting
- Athlete Education *****
- Communicate with Physician, PT/ OT in regards to healing status

Contact Info

Jennifer Allen,PT,OCS,CHT Physical Therapist Board Certified Clinical Specialist in Orthopaedic Physical Therapy Certified Hand Therapist Bodycentral Physical Therapy 3124 N Swan Rd Tucson, AZ 85712 (520)325-4002 Jen@Bodycentralpt.net

References/Credits

• Alexander, R.D., Catalano, L.W., Barron, O.A., & Glickel, S. Z. (2002). The extensor pollicis brevis entrapment test in the treatment of de Quervain's disease. *J Hand Surg, 30*, 361-364.

• Brophy, R.H., Barnes, R., Rodeo, S.A., & Warren, R.F. (2007). Prevalence of musculoskeletal disorders at the NFL combine- trends from 1987-2000. *Med & Science in Sports & Exercise,* 22-27.

References

- Kalainov, D.M., & Cohen, M. S. (2009). Treatment of traumatic scapholunate dissociation. *Journal* of Hand Surgery, 34A, 1317-1319.
- Kerr, Z.Y., Collins, C. L., Pommering, T. L., Fields, S. K., & Comstock, R. D. (2011). Dislocation/separation injuries among US high school athletes in 9 selected sports: 2005-2009. *Clin J Sport Med, 21(2),* 101-108.

References

• Leddy, J.P., & Coyle, M.P. (1989). Palmar dislocation of the PIP joint. *American Society of the Hand Presentation.* Seattle, Washington.

References/Credits

 A special Thank You to Dr. Janice Loudon and the University of Kansas Medical Center School of Allied Health for permission to use the artistic representations of the hand and wrist ligaments in this presentation.

Retrieved from <u>http://classes.kumc.edu</u> on 1/28/12.

